Fundamental algorithm

$ 89.50

Fundamental algorithm

1. Consider the following pairs of functions. For each pair, state whether (i) f = Θ(g), (ii) f = O(g) but f ̸= Θ(g), (iii) g = O(f) but g ̸= Θ(f), or (iv) none of these. a. f(n)=n,g(n)=2logn. b. f(n)=n,g(n)=22logn. c. f(n) = n2, g(n) = 1010n. d. f(n)=2n,g(n)=2nlogn. e. f(n) = nlog n, g(n) = (log n)n. f. f(n) = n3 + 8n2 + 87, g(n) = n3/1000. g. f(n) = 4n, g(n) = 3n. h. f(n) = logn, g(n) = loglogn. i. f(n)=nwhennisodd,f(n)=n2 whenniseven;g(n)=nwhenniseven,g(n)=n2 when n is odd. j. f(n)=nwhennisodd,f(n)=n2 whenniseven;g(n)=n2. The post Fundamental algorithm first appeared on COMPLIANT PAPERS.

Category:

Fundamental algorithm

Get clear, step-by-step solutions for “Fundamental algorithm” prepared by experts.

 

 

1. Consider the following pairs of functions. For each pair, state whether (i) f = Θ(g), (ii) f = O(g) but f ̸= Θ(g), (iii) g = O(f) but g ̸= Θ(f), or (iv) none of these.

a. f(n)=n,g(n)=2logn.
b. f(n)=n,g(n)=22logn.
c. f(n) = n2, g(n) = 1010n.
d. f(n)=2n,g(n)=2nlogn.
e. f(n) = nlog n, g(n) = (log n)n.
f. f(n) = n3 + 8n2 + 87, g(n) = n3/1000.
g. f(n) = 4n, g(n) = 3n.
h. f(n) = logn, g(n) = loglogn.
i. f(n)=nwhennisodd,f(n)=n2 whenniseven;g(n)=nwhenniseven,g(n)=n2

when n is odd.
j. f(n)=nwhennisodd,f(n)=n2 whenniseven;g(n)=n2.

 

 

 

The post Fundamental algorithm first appeared on COMPLIANT PAPERS.

Q: Is this the full solution for “Fundamental algorithm”?

A: Yes, it’s the complete solution. Order now to access it instantly.

Reviews

There are no reviews yet.

Be the first to review “Fundamental algorithm”

Your email address will not be published. Required fields are marked *